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DISCLAIMER

The findings in this report are not to be construed as an official

Department of the Army position unless so designated by other authorized
documents.
The use of trade name(s) and/or manufacture(s) does not constitute

an official indorsement or approval.

DISPOSITION

Destroy this report when it is no longer needed. Do not return it

to the originator.
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INTRODUCTION

Experimeﬂtal observations indicate that when metallic materials are
subjected to cyclic torsional loading, a hardening behavior similar to the
case of uniaxial loading occurs. In a previous paper, Wu and Yip (ref 1)
successfully applied the endochronic theory of plasticity to describe the
eyclic hardening phenomenon under uniaxial loading. The present report
applies this theory to the case of cyclic torsional loading of a thin-walled
cylinder and a solid cylinder of circular cross-section, and it investigates
the residual stress distribution.

The endochronic theory with plastic strain defined intrinsic time has
previously been applied to describe several different experimentally observed
phenomena (refs 1-6). We are now giving speclal attention to the prediction
of residual stress by use of this theory.

Residual stresses are rgceiving increased attention by the engineering
community. The p;imary goals are the reduction of cost of materials usedlin
structures, the extension of the useful lifetime of existing structures, and
the achievement of greater reliability of structural componeﬁts through the
understanding of residual stress distribution. This has led to much activity
in the study of residual stress measurement methodologies, especially those
which may be applied to nondestructuve inspection. However, analytical
investigation is also important so that residual stress fields in test
specimens and engineering components may be determined. This information is
particularly useful in the engineering design. In fact, by knowing the

residual stress distribution, its beneficial effects may be exploited.

References are listed at the end of this report.
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e dyq = d k 2213 (2)
B '-. - e - —————
B \__‘ ‘ ij ij 1 2 uo

4;_ where 244 1s a strain-like tensor, ejj and syj are deviatoric strain and
b :

e stress tensors respectively, k; is a positive constant such that 0 < k; <1,
ey

': and ¥, is shear modulus.

:i: The general constitutive equation for shear response of a material with
o
f;{ an elastic hydrostatic response and no coupling between deviatoric and
e

S hydrostatic behavior is:

] z dey 3

o s1y = 2 [ wz-z') -==% dz' 3)
AN ‘ o dz'

s where z is an intrinsic time which is related to § by the following time

scale: az
- = £(3) (4)
dz

It has been shown in Reference 12 that £(g) describes isotropic hardening and

. 1s therefore termed the hardening function. )

gﬁ; Define

i u(z) = 1y6(2) (5)
‘)_ where G(0) = 1 indicates initially elastic response. Using the Laplace

'\{\;

j:{ transform technique (for details see Reference 12), Eq. (3) becomes

i :

. a8y

Pl :
> 81 = 2M, fz p(z-z')---1 dz’ (6

o dz'

A
[~ - in which, for the case of k; = 1,

AN
- p(z) = p58(z) + p1(2) )
. where p1(z) 1is composed of a finite sum of exponential terms, p, is constant,
=
ﬁ’: and 6(z) is the Dirac delta function. A general constitutive equation in
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terms of initial yield stress Sy and plastic strain Qij(kl = 1) can be

obtained as
s{y = sy f;il + 21, f: P1(z=2") g;%! dz' (8)

by substituting Eq. (7) into Eq. (6) and defining sy = 2yy,p,- Note that at z
= 0:

1 ®

S{y = Sy 3z [g=0

Also from Eq. (2), the condition Qij = 0 gives the relation,

81§ = 2Hoeyj (10)

Equation (10) merely attests to the fact that while z = 0, the deformation

process is reversible and therefore the deviatoric stress response is elastic.

DESCRIPTION OF CYCLIC SHEAR RESPONSE
For pure shear deformation with p1(z) represented by one exponential

term, one has

drt
dQ = dn - =—- (lla)
2y
and
2u,P1(2) = 2me % (11b)

where n 1is total shear strain and Q is plastic shear strain. Equation (8)

yields
4 z by dR
Tty =+ 2y [ e"H2"Z') —mm gp 12
Y dz 1 fo dz' (12

with

dz
-- = £(z) and dg = |dQ| (13)
z
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and Ty is the shear yield stress. Using Eqs. (12) and (13) and a suitable
function f, the governing equations for torsional test of a thin-walled tube
during loading, unloading, and relodding can be derived. The initially
elastic unloading (reloading) response and following Bauschinger effect will
be governed by the material property itself, provided that the intrinsic time
measurement 1s correct.

If the first unloading of stress-strain curve begins when 1ntrins;c time
measure ¢ reaches ¥, the positive property of 7 requires Eq. (13) to be

dg = -dQ (14)

during unloading. Define z* and * as loading and unloading measures around

- +
the neighborhood of §* in § space. Then Eq. (12) leads to

*
dzg! z , aa

oty o= 2y [T e HEZE) 4 (15)
y dz| o ° dz'
azl 3z vy do

= -1y - +2u J + o~a(z-z') oo dz' ’1%8)
dz‘;* o dz'

where 1~ and Tt are stress states nearby z* at loading and unloading

processes, respectively. In the limit, when z* + ¢* and ¢* C*,
- +

‘ dcl
T - 1t = 21y -=| Q7
d2|c*

Therefore, the shear stress is discontinuous with a discoatinuity of magnitude

d
ot = 27, ==| (18)

in the initially elastic unloading region. If the consequent loading

ik

s ¢+« then there 1s an elastic change of

reversals take place at C**, 4




A T e

magnitude

dg!
At = 27y - o T (19)
dz| g% = prxk

yees
in the shear stress at each point of load reversal. During these elastic
responses, the values of § and z remain unchanged.
During the elastic response, df is zero and the constitutive equation is
simply
dt = 2u, dn (20)
Once the change in stress is larger than T - t*, then the material behavior

is governed by Eq. (12).

TORSION OF A CIRCULAR CYLINDER
In laboratory experiments on torsion of solid bars, the recorded data are
usually the strain at the outer fiber and the amount of externally applied

torque. In order to describe these experimental results, the shear

constitutive equation éstablished in the previous section and based on a thin-
walled tubular specimen should be applied together with the equations
discussed in this section.

The external torque for a solid bar with a circular cross—section is
given as:

T

a
Tg = 21 [ twldr (21)
[o]

where T 1s current shear stress state corresponding to location r, and r, is
the radius of cross—section. The torque can be approximated by discretizing
the circular cross—section into a finite number of concentric circular rings

and assuming T to be constant over each ring. Thus




~ e 3 S g T T T T o O T I W o v

n
Tg = 2w z TirizAti (22)
i=1 :
Now Eqs. (12) and (13) along with Eq. (lla) can be solved to yield Ty at each
fiber, if the value of nj (shear strain) at that fiber, specified by radius

ri, 1s known. Geometrical considerations show that radial lines have to

remain straight after deformation. Thus, one concludes that

Ty
a

where n, is the strain at the outermost fiber.

Recall that there is a yield stress introduced in Eq. (8) when k; = 1 and
; = 0. Hence, an elastic core always exists during deformation whose radius

= re 1s easily computed as

- rg = =~ - (24)

If ché'expetiment is strain-controlled with strain at ry varying between -ny
and +n,, and with ny in the plastic range, then the elastic core radius
remains fixed during all stages of loading after the first load reversal.

Now that njy, is known, the value of shear stress at each fiber t§ can be
evaluated and used in Eq. (22). Note that at the points of load reversal, for
the fibers in the plastically deformed region, there exists an elastic range
governed by Eq. (19). This discrete type formulation of torque has the

advantage of being capable of describing the transient and residual stresses

in the bar as well.




COMPUTATION
The governing equations are Eqs. (lla), (12), (13), (22), and (23) which

are summarized below:

dt
dQ = dn = =—- (11a)
2y,
o -a(z-z"') as ' ‘
Ty ot 2y f e prry dz' (12)
dz
- = £(z) and 4z = |d9| (13)
dz
n
Tg = 2% ] 1yry2ary ' ST (22)
i=l
L §

a

Since the analytical solution of these equations is qu#;e involved, and
in particular requires different treatment and derivation for different
hardening functions f(z), a numerical scheme has been developed to solve the
above equations. Since the relationship between Z, the independent variable,
and n, the controlled variable is indirect, iterative techniques are an
integral part of this program.

In order to ascertain the degree of accuracy of numerical methods, a
hypothetical case was assumed. Namely, the field equations were solved

analytically using £f(z) = exp(B8z), and the results were compared with those

[ obtained numerically. The difference between the two is so small that using
P
L numerical techniques does not introduce any significant amount of error.
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RESULTS AND DISCUSSION

Once the accuracy of the computer program was established, it was used to
predict the results of experiments performed on annealed AISI 4142 steel.
Figure 1 shows the dimensions of the tubular specimens, and these are also the
dimensions (without ID) of the solid specimens. The experimental results of
cyclic torsion tests conducted by the Plasticity Research Laboratory at The
University of Iowa are presented along with the theoretical predictions in
Figures 2 and 3. This material does not show any appreciable amount of cyclic
hardening.

The most important factor in theoretical predictions 1s the choice of the

hardening function £(z). In this computation, the form

dg
[ - = C - (C-1)e~B2 (25)
- dz g
.
has been used because of its simplicity and its proven usefulness in case of
cyclic loading (ref 1). q
Following accepted procedures, the shear stress—strain curve for the ]

material was obtained from thin-walled tubular specimens. Then from this

data, the values of the material constants were determined to be: a = 1100, 8

= 30,000, C = 1.9, uy = 1 x 107 psi (6.89 x 10* MPa), u; = 3.6 x 106 psi

é (24.804 x 103 MPa), Ty = 6,500 psi (44.79 MPa). As can be seen from Figure 2
t this set of constants predicts the experimental results reasonably well. The
X same set of constants was then used to predict the results for a solid bar

; test. As evidenced in Figure 3, theoretical and experimental results are in

reasonable agreement.
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As a consequence of the computational process the distribution of stress

...

in the cross-section was evaluated. Such distribution at different magnitudes

4, <-4,

- of torque during the first loading half-cycle is presented in Figure 4.

s, v, LR}

s Y e
Tala

Notice that the outer fiber is the first one to yield; subsequently as more

torque 1s applied, the radius of the elastic inner core gets smaller.
Figure 5 presents the distribution of, the shear stress in the bar at

= different stages of the first unloading. The flat portion in the lower curves

corresponds to the fibers which have surpassed this initial elastic unloading

and started plastic unloading. An interesting observation can bhe made here;

when the amount of reversed torque gets larger, the size of the plastically

~ deformed region, i.e., the flat portion, gets bigger as well, but for each
individual fiber the developed plastic stress does not increase accordingly.

. Rather, the applied torque is compensated for by elastic relief of shear

- stress in the intermal fibers. The radius of the elastic core has been found
to be ro/ry = 0.0913 for this computation.

i Shown in Figure 6 are the residual shear stress distributions during

i first unloading (the solid curve) and first reloading (the dashed curve) when
the applied torque 1s equal to zero. The solid curve is the favorable one if

- the applied torque during service is in the same direction as the ianitial

loading. However, 1f the applied torque during service is in the reversed

direction, then neither advantageous nor detrimental effects can be claimed as

is shown by Figure 5. It i3 seen that the residual stress distribution of

Figure 6 agrees with that proposed by Swift (ref 1ll) and that the residual

N [k
4 I‘_X._I..l.l'.‘

.! shear stress at the surface of the cylinder is smaller than that obtained by
. neglecting the Bauschinger effect in the calculation.
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For purposes of investigating the implications of the model developed

here, a hypothetical material with appreciable cyclic hardening behavior was
studied. The shear stress-strain behavior of such material under fully-
reversed torsional loading is presented in Figure 7. The material constants
for this material were determined as: a = 1,000, 8 =350, C= 1.5, pu, = 1lx
107 psi (6.89 x 10" MPa), uy = 4 x 105 psi (27.56 x 103 MPa), and 7y = 10,000
psi (68.9 MPa). A steady loop is established after a few cycles.

Figure 8 presents the residual stress distribution at zero applied torque
for each cycle up to and including the steady loop. It is seen that the
residual stress distribution does not change very much with respect to eyelic

torsion. The small increase in the residual stress incurred at the exterior

fiber at steady state i{s on the safe side when service load is applied.
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